

Welcome to Runtype’s documentation!

Runtype is a collection of run-time type utilities for Python.

It contains the following user-facing modules:

	Validation (isa & issubclass) - Alternatives to ‘isinstance’ and ‘issubclass’

	Dataclass - Type-validation in dataclasses

	Dispatch - Multiple dispatch

	Type Classes - Utilities for creating type systems

Install

pip install runtype

No dependencies.

Requires Python 3.6 or up.

ArchLinux

ArchLinux users can install the package by running:

yay -S python-runtype

Validation (isa & issubclass)

This module provides type validation functions for Python with support for the typing module.

It uses the same internal mechanism as used by ‘dataclass’ and ‘dispatch’ in order to resolve and validate types and values.

You may use them to replace isinstance() and issubclass. See benchmarks.

Functions

	
runtype.validation.isa(obj, t)

	Tests if ‘obj’ is of type ‘t’

Behaves like Python’s isinstance, but supports the typing module and constraints.

	
runtype.validation.ensure_isa(obj, t, sampler=None)

	Ensure ‘obj’ is of type ‘t’. Otherwise, throws a TypeError

	
runtype.validation.assert_isa(obj, t)

	Ensure ‘obj’ is of type ‘t’. Otherwise, throws a TypeError

Does nothing if Python is run with -O. (like the assert statement)

	
runtype.validation.issubclass(t1, t2)

	Test if t1 is a subclass of t2

	Parameters:

	
	type (t1 - a) –

	types (t2 - a type or a tuple of) –

Behaves like Python’s issubclass, but supports the typing module.

	
runtype.validation.is_subtype(t1, t2)

	Test if t1 is a subtype of t2

Element-wise validation

When called on generics such as List, Tuple, Set and Dict, runtype will iterate over each element and call ensure_isa() recursively.

Example:

>>> isa([1,2], List[int])
True

>>> isa([1,"a"], List[int])
False

>>> isa([{1: 2}], List[Dict[int, int]])
True

>>> isa([{1: 2}], List[Dict[int, str]])
False

How does it work?

Runtype maps the given types onto an internal type system, that is capable of expressing the Python type system.

In order to validate a value against a type, we do the following:

	Convert (cast) the given type into an instance of PythonType, that represents the given type within the internal type system. This operation is cached.

	Call the PythonType.validate_instance() method with the given value. Each subclass has its own implementation. For example:

	In PythonDataType (e.g. Int or DateTime), the method will simply call Python’s isinstance() on the value.

	In SequenceType (e.g. List or Iter), after isinstance(), this method will call itself recursively for each item.

The internal type system is implemented using the Type Classes module.

Dataclass

Decorator

	
runtype.dataclass.dataclass(*, check_types: Union[bool, str] = CHECK_TYPES, config: Configuration = python_config, init: bool = True, repr: bool = True, eq: bool = True, order: bool = False, unsafe_hash: bool = False, frozen: bool = True, slots: bool = Ellipsis) → Callable[[Type[_T]], Type[_T]]

	
runtype.dataclass.dataclass(_cls: Type[_T]) → Type[_T]

	Runtype’s dataclass is a drop-in replacement to Python’s built-in dataclass, with added functionality.

Differences from builtin dataclass:

	Type validation

	Adds run-time type validation (when check_types is nonzero)

	Performs automatic casting (when check_types == ‘cast’)

	Ergonomics

	Supports assigning mutable literals (i.e. list, set, and dict). Each instance gets a new copy.

	Adds convenience methods: replace(), aslist(), astuple(), and iterator for dict(this).
These methods won’t override existing ones. They will be added only if the names aren’t used.

	Setting the default as None automatically makes the type into Optional, if it isn’t already.

	Members without a default are allowed after members with a default
(but they are required in order to create the instance)

	Misc

	Frozen by default

All of the above differences are configurable and extendable.

	Parameters:

	
	check_types (Union[bool, str]) – Whether or not to validate the values, according to the given type annotations.
Possible values: False, True, or ‘cast’

	config (Configuration) – Configuration to modify dataclass behavior, mostly regarding type validation.

Example

>>> @dataclass
>>> class Point:
... x: int
... y: int

>>> p = Point(2, 3)
>>> p
Point(x=2, y=3)
>>> dict(p) # Maintains order
{'x': 2, 'y': 3}

>>> p.replace(x=30) # New instance
Point(x=30, y=3)

Part of the added ergonomics and functionality were influenced by Pydantic:

	Members that are assigned None, automatically become Optional. (Unless specified otherwise through config)

	Members without a default value, following members with a default value, are now allowed (and will fail if not assigned on init).

Added methods

The following functions, which are available as at the module level, will also be available as methods of the dataclass instances.
These methods won’t override existing ones; They will be added only if the names aren’t already used.

	
runtype.dataclass.replace(inst, **kwargs)

	Returns a new instance, with the given attibutes and values overwriting the existing ones.

Useful for making copies with small updates.

Examples

>>> @dataclass
... class A:
... a: int
... b: int
>>> A(1, 2).replace(a=-2)
A(a=-2, b=2)

>>> some_instance.replace() == copy(some_instance) # Equivalent operations
True

	
runtype.dataclass.astuple(inst)

	Returns a tuple of the values

	
runtype.dataclass.aslist(inst)

	Returns a list of the values

	
runtype.dataclass.json(inst)

	Returns a JSON of values, going recursively into other objects (if possible)

Configuration

	
class runtype.dataclass.Configuration

	Generic configuration template for dataclass. Mainly for type-checking.

To modify dataclass behavior, inherit and extend this class,
and pass it to the dataclass() function as the config parameter.
(parameter check_types must be nonzero)

Example

class IsMember(Configuration):
 @staticmethod
 def ensure_isa(a, b):
 if a not in b:
 raise TypeError(f"{a} is not in {b}")

@dataclass(config=IsMember())
class Form:
 answer1: ("yes", "no")
 score: range(1, 11)

...

>>> Form("no", 3)
Form(answer1='no', score=3)

>>> Form("no", 12)
Traceback (most recent call last):
 ...
TypeError: 12 is not in range(1, 11)

	
on_default(default)

	Called whenever a dataclass member is assigned a default value.

	
abstract ensure_isa(a, b, sampler=None)

	Ensure that ‘a’ is an instance of type ‘b’. If not, raise a TypeError.

	
abstract cast(obj, t)

	Attempt to cast ‘obj’ to type ‘t’. If such a cast is not possible, raise a TypeError.

The result is expected to pass self.ensure_isa(res, t) without an error,
however this assertion is not validated, for performance reasons.

	
class runtype.dataclass.PythonConfiguration

	Configuration to support Mypy-like and Pydantic-like features

This is the default class given to the dataclass() function.

Casting

When called with the option check_types="cast", values that are provided to instanciate the dataclass will be cast instead of validated.

Runtype will only attempt to cast in situations when no data is lost when converting the value.

The following casts are currently implemented:

	str -> int

	str -> datetime

	int -> float

If a cast fails, Runtype raises a TypeError. (same as when validation fails)

More casts will be added in time.

For non-builtin types, Runtype will attempt to call the cast_from class-method, if one exists.

Example:

@dataclass
class Name:
 first: str
 last: str = None

 @classmethod
 def cast_from(cls, s: str):
 return cls(*s.split())

@dataclass(check_types='cast')
class Person:
 name: Name

p = Person("Albert Einstein")
assert p.name.first == 'Albert'
assert p.name.last == 'Einstein'

Sampling

When called with the option check_types="sample", lists and dictionaries will only have a sample of their items validated, instead of each item.

This approach will validate big lists and dicts much faster, but at the cost of possibly missing anomalies in them.

Performance

Type verification in classes introduces a small run-time overhead.

When running in production, it’s recommended to use the -O switch for Python. It will make Runtype skip type verification in dataclasses. (unless check_types is specified.)

Alternatively, you can use a shared dataclass decorator, and enable/disable type-checking with a single change.

Example:

common.py
import runtype

from .settings import DEBUG # Define DEBUG however you want

dataclass = runtype.dataclass(check_types=DEBUG)

Compared to Pydantic

Using Pydantic’s own benchmark, runtype performs twice faster than Pydantic. (or, Pydantic is twice slower than Runtype)

pydantic best=63.839μs/iter avg=65.501μs/iter stdev=1.763μs/iter version=1.9.1
attrs + cattrs best=45.607μs/iter avg=45.804μs/iter stdev=0.386μs/iter version=21.4.0
runtype best=31.500μs/iter avg=32.281μs/iter stdev=0.753μs/iter version=0.2.7

See the code here [https://github.com/samuelcolvin/pydantic/pull/3264].

Dispatch

Provides a decorator that enables multiple-dispatch for functions.

Features:

	Full specificity resolution

	Mypy support

(Inspired by Julia)

See benchmarks.

Decorator

	
runtype.Dispatch(typesystem: ~runtype.typesystem.TypeSystem = <runtype.validation.PythonTyping object>)

	Creates a decorator attached to a dispatch group,
that when applied to a function, enables multiple-dispatch for it.

	Parameters:

	typesystem (Typesystem) – Which type-system to use for dispatch. Default is Python’s.

Example

>>> from runtype import Dispatch
>>> dp = Dispatch()

>>> @dp
... def add1(i: Optional[int]):
... return i + 1

>>> @dp
... def add1(s: Optional[str]):
... return s + "1"

>>> @dp
... def add1(a): # Any, which is the least-specific
... return (a, 1)

>>> add1(1)
2

>>> add1("1")
11

>>> add1(1.0)
(1.0, 1)

	
class runtype.dispatch.MultiDispatch(typesystem: TypeSystem, test_subtypes: Sequence[int] = ())

	Creates a dispatch group for multiple dispatch

	Parameters:

	
	typesystem (typesystem - instance for interfacing with the) –

	test_subtypes – indices of params that should be matched by subclass instead of isinstance.

What is multiple-dispatch?

Multiple-dispatch is an advanced technique for structuring code, that complements object-oriented programming.

Unlike in OOP, where the type of the “object” (or: first argument) is always what determines the dispatch, in multiple-dispatch all the arguments decide together, according the idea of specificity: The more specific classes (i.e. subclasses) get picked before the more abstract ones (i.e. superclasses).

That means that when you need to define a logical operation that applies to several types, you can first solve the most abstract case, and then slowly add special handling for more specific types as required. If you ever found yourself writing several “isinstance” in a row, you could probably use multiple-dispatch to write better code!

Multiple-dispatch allows you to:

	Write type-specific functions using a dispatch model that is much more flexible than object-oriented.

	Group your functions based on “action” instead of based on type.

You can think of multiple-dispatch as function overloading on steroids.

Runtype’s dispatcher

Runtype’s dispatcher is fast, and will never make an arbitrary choice: in ambiguous situations it will always throw an error.

As a side-effect, it also provides type validation to functions. Trying to dispatch with types that don’t match, will result in a dispatch-error.

Dispatch chooses the right function based on the idea specificity, which means that class MyStr(str) is more specific than str, and so on:

MyStr(str) < str < Union[int, str] < object

It uses the validation module as the basis for its type matching, which means that it supports the use of typing classes such as List or Union (See “limitations” for more on that).

Some classes cannot be compared, for example Optional[int] and Optional[str] are ambiguous for the value None. See “ambiguity” for more details.

Users who are familiar with Julia’s multiple dispatch, will find runtype’s dispatch to be very familiar.

Unlike Julia, Runtype asks to instanciate your own dispatch-group, to avoid collisions between different modules and projects that aren’t aware of each other.

Ideally, every project will instanciate Dispatch only once, in a module such as utils.py or common.py.

Basic Use

Multidispatch groups functions by their name. Functions of different names will never collide with each other.

The order in which you define functions doesn’t matter to runtype, but it’s recommended to order functions from most specific to least specific.

Example:

from runtype import multidispatch as md

@dataclass(frozen=False)
class Point:
 x: int = 0
 y: int = 0

 @md
 def __init__(self, points: list | tuple):
 self.x, self.y = points

 @md
 def __init__(self, points: dict):
 self.x = points['x']
 self.y = points['y']

Test constructors
p0 = Point() # Default constructor
assert p0 == Point(0, 0) # Default constructor
assert p0 == Point([0, 0]) # User constructor
assert p0 == Point((0, 0)) # User constructor
assert p0 == Point({"x": 0, "y": 0}) # User constructor

A different dispatch object is created for each module, so collisions between different modules are impossible.

Users who want to define a dispatch across several modules, or to have more granular control, can use the Dispatch class:

from runtype import Dispatch
dp = Dispatch()

Then, the group can be used as a decorator for any number of functions, in any module.

Functions will still be grouped by name.

Specificity

When the user calls a dispatched function group, the dispatcher will always choose the most specific function.

If specificity is ambiguous, it will throw a DispatchError. Read more in the “ambiguity” section.

Dispatch always chooses the most specific function, across all arguments:

Example:

from typing import Union

@md
def f(a: int, b: int):
 return a + b

@md
def f(a: Union[int, str], b: int):
 return (a, b)

...

>>> f(1, 2)
3
>>> f("a", 2)
('a', 2)

Although both functions “match” with f(1, 2), the first definition is unambiguously more specific.

Ambiguity in Dispatch

Ambiguity can result from two situations:

	The argument matches two parameters, and neither is a subclass of the other (Example: None matches both Optional[str] and Optional[int])

	Specificity isn’t consistent in one function - each argument “wins” in a different function.

Example:

>>> @md
... def f(a, b: int): pass
>>> @md
... def f(a: int, b): pass
>>> f(1, 1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
runtype.dispatch.DispatchError: Ambiguous dispatch

Dispatch is designed to always throw an error when the right choice isn’t obvious.

Another example:

@md
def join(seq, sep: str = ''):
 return sep.join(str(s) for s in seq)

@md
def join(seq, sep: list):
 return join(join(sep, str(s)) for s in seq)
...

>>> join([0, 0, 7]) # -> 1st definition
'007'

>>> join([1, 2, 3], ', ') # -> 1st definition
'1, 2, 3'

>>> join([0, 0, 7], ['(', ')']) # -> 2nd definition
'(0)(0)(7)'

>>> join([1, 2, 3], 0) # -> no definition
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ...
runtype.dispatch.DispatchError: Function 'join' not found for signature (<class 'list'>, <class 'int'>)

Dispatch chooses the right function based on the idea specificity, which means that class MyStr(str) is more specific than str, and so on: MyStr(str) < str < Union[int, str] < object.

MyPy support

multidispatch works with mypy by employing the typing.overload decorator, aiding in granular type resolution.

However, due to the limited design of the typing.overload decorator, there are several rules that need to be followed, and limitations that should be considered.

	For MyPy’s benefit, more specific functions should be placed above less specific functions.

	The last dispatched function of each function group, must be written without type declarations (making it the least specific), and use the multidispatch_final decorator. It is recommended to use this function for error handling and default functionality.

Note: Mypy doesn’t support all of the functionality of Runtype’s dispatch, such as full specificity resolution. Therefore, some valid dispatch constructs will produce an error in mypy.

Example usage:

from runtype import multidispatch as md, multidispatch_final as md_final

@md
def join(seq, sep: str = ''):
 return sep.join(str(s) for s in seq)

@md
def join(seq, sep: list):
 return join(join(sep, str(s)) for s in seq)

@md_final
def join(seq, sep):
 raise NotImplementedError()

Calling join() with the wrong types -
join(1,2) # At runtime, raises NotImplementedError

Mypy generates the following report:
error: No overload variant of "join" matches argument types "int", "int" [call-overload]
note: Possible overload variants:
note: def join(seq: Any, sep: str = ...) -> Any
note: def join(seq: Any, sep: list[Any]) -> Any

Performance

Multiple-dispatch caches call-signatures by default, and adds a small runtime overhead after the first call.

See benchmarks.

Dispatch is not recommended for use in functions that are called often in time-critical code.

Limitations

Dispatch currently doesn’t support, and will simply ignore:

	keyword arguments (Dispatch relies on the order of the arguments)

	*args

	**kwargs

These may be implemented in future releases.

Dispatch does not support generics or constraints. Avoid using List[T], Tuple[T] or Dict[T1, T2] in the function signature. (this is due to conflict with caching, and might be implemented in the future)

Union and Optional are supported.

Type Classes

A collection of classes that serve as building blocks for making your own type system.

You can use that type system to:

	reason about your program’s logic

	use it with runtype for customized dispatch and validation.

Types

Note: These types are not specific to the Python type system!

	
class runtype.base_types.Type

	Abstract Type class. Every type inherit from it.

	
class runtype.base_types.AnyType

	Represents the Any type.

Any may contain any other type, and be contained by any other type.

For any type ‘t’ within the typesystem, t is a subtype of Any (or: t <= Any)
But also Any is a subtype of t (or: Any <= t)

	
class runtype.base_types.DataType

	Abstract class for a data type.

A data-type is any type that contains non-type information.

Example of possible data-types: int, float, text, list

	
class runtype.base_types.SumType(types)

	Implements a sum type, i.e. a disjoint union of a set of types.

Similar to Python’s typing.Union.

	
class runtype.base_types.ProductType(types)

	Implements a product type, i.e. a record / tuple / struct

	
class runtype.base_types.ContainerType

	Base class for containers, such as generics.

	
class runtype.base_types.GenericType(base: Type, item: Union[type, Type], variance)

	Implements a generic type. i.e. a container for items of a specific type.

For any two generic types a[i] and b[j], it’s true that a[i] <= b[j] iff a <= b and i <= j.

	
class runtype.base_types.PhantomType

	Implements a base for phantom types.

A phantom type is a “meta” type that can wrap existing types,
but it is transparent (subtype checks may skip over it), and has no effect otherwise.

	
class runtype.base_types.PhantomGenericType(base, item=All)

	Implements a generic phantom type, for carrying metadata within the type signature.

For any phantom type p[i], it’s true that p[i] <= p but also p[i] <= i and i <= p[i].

	
class runtype.base_types.Validator

	Defines the validator interface.

	
validate_instance(obj, sampler: Optional[Callable[[Sequence], Sequence]] = None)

	Validates obj, raising a TypeMismatchError if it does not conform.

If sampler is provided, it will be applied to the instance in order to
validate only a sample of the object. This approach may validate much faster,
but might miss anomalies in the data.

	
abstract test_instance(obj, sampler=None)

	Tests obj, returning a True/False for whether it conforms or not.

If sampler is provided, it will be applied to the instance in order to
validate only a sample of the object.

	
class runtype.base_types.Constraint(for_type, predicates)

	Defines a constraint, which activates during validation.

Typing support

Runtype supports a wide-range of types and typing constructs, however full-support is still work in progress.

For now, some constructs are available for validation, but not for dispatch.

Here is the detailed list:

	Types / Constructs

	Validation

	Dispatch

	Primitives (None, bool, float, int, str, etc.)

	✔

	✔

	Date primitives (datetime, date, time, timedelta)

	✔

	✔

	Containers, non-generic (list, tuple, dict)

	✔

	✔

	Callable, non-generic (callable)

	✔

	✔

	abc.Set, abc.MutableMapping, etc.

	✔

	✔

	typing.AbstractSet

	✔

	✔

	typing.Any

	✔

	✔

	typing.Union, Optional

	✔

	✔

	typing.Type (Type[x])

	✔

	✔

	typing.Literal

	✔

	✔

	Generic containers (list[x], tuple[x], dict[x])

	✔

	TODO

	Infinite tuple (tuple[x, …])

	✔

	TODO

	Generic callable

	TODO

	TODO

	typing.IO

	TODO

	TODO

	TypeVar

	TODO

	TODO

	Protocol

	TODO

	TODO

Benchmarks

The following benchmarks were run using pytest-benchmark and plotted using matplotlib.

The code for running and plotting these benchmarks is included in the repo.
See: docs/generate_benchmarks.sh

Benchmark contributions for more use-cases or new libraries are welcome!

Validation (isinstance)

In the image below, we can see runtype is faster than its (only?) competitor, the library beartype [https://github.com/beartype/beartype].

We can see the native isinstance() is faster than runtype’s isa(). However, it isn’t quite a fair comparison,
because it doesn’t support all the types that isa() supports.

Conclusion: Runtype beats the competition!

[image: _images/bench_validation.jpg]

Dispatch

In the images below, we cann see runtyp’s multiple dispatch is faster than its (only?) competitor, the library plum [https://github.com/beartype/plum].

We can see that the naive approach of using if-else is faster for a small amount of branches,
but by 32 branches runtype is already significantly faster.

Curiously, for dispatching to unions of types, runtype is twice faster (!) than the naive if-else approach,
even for a very low number of branches.

It’s worth noting that using while using if-else is sometimes faster, it is order-sensitive, and lacks important abilities that runtype offers, such as specificity-resolution on multiple arguments.

Conclusion: Runtype beats the competition, and sometimes the if-else approach too!

[image: _images/bench_dispatch.jpg]
[image: _images/bench_dispatch_union.jpg]

Index

 A
 | C
 | D
 | E
 | G
 | I
 | J
 | M
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	AnyType (class in runtype.base_types)

 	aslist() (in module runtype.dataclass)

 	
 	assert_isa() (in module runtype.validation)

 	astuple() (in module runtype.dataclass)

C

 	
 	cast() (runtype.dataclass.Configuration method)

 	Configuration (class in runtype.dataclass)

 	
 	Constraint (class in runtype.base_types)

 	ContainerType (class in runtype.base_types)

D

 	
 	dataclass() (in module runtype.dataclass)

 	
 	DataType (class in runtype.base_types)

 	Dispatch() (in module runtype)

E

 	
 	ensure_isa() (in module runtype.validation)

 	(runtype.dataclass.Configuration method)

G

 	
 	GenericType (class in runtype.base_types)

I

 	
 	is_subtype() (in module runtype.validation)

 	
 	isa() (in module runtype.validation)

 	issubclass() (in module runtype.validation)

J

 	
 	json() (in module runtype.dataclass)

M

 	
 	MultiDispatch (class in runtype.dispatch)

O

 	
 	on_default() (runtype.dataclass.Configuration method)

P

 	
 	PhantomGenericType (class in runtype.base_types)

 	PhantomType (class in runtype.base_types)

 	
 	ProductType (class in runtype.base_types)

 	PythonConfiguration (class in runtype.dataclass)

R

 	
 	replace() (in module runtype.dataclass)

S

 	
 	SumType (class in runtype.base_types)

T

 	
 	test_instance() (runtype.base_types.Validator method)

 	
 	Type (class in runtype.base_types)

V

 	
 	validate_instance() (runtype.base_types.Validator method)

 	
 	Validator (class in runtype.base_types)

 nav.xhtml

 Table of Contents

 		
 Welcome to Runtype’s documentation!

_static/file.png

_images/bench_validation.jpg
isinstance(x, (int, str, float, bool))

isinstance(x, int | str | float | bool)

isinstance(x, list{int])

beartype (is_bearable)

= runtype (isa)

stdiib (isinstance) |

0.34
0.61
.57
.43
0.65
02 0.4 0.6 0.8 10

Median Duration in microseconds

_static/minus.png

_static/plus.png

_images/bench_dispatch.jpg
== pum R untype stdlib (if-else + isinstance)

dispatch 1 argument, 2 branches 0.42
.63
dispatch 1 argument, 8 branches .41
.61
dispatch 1 argument, with 32 branches 0.46
0.67
dispatch 5 arguments, 2 branches o.51.
0.73
dispatch with mixed specificity (8 branches) o.53
.70
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7

Median Duration in microseconds

_images/bench_dispatch_union.jpg
stdlib (if-else + isinstance) WEN plum EEE runtype

dispatch 2 branches, union of 8 types §0.51

515

0 10 20 30 40 50
Median Duration in microseconds

